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Abstract – The main scope of this paper is to present a summary of the monitoring methods, signal 
analysis and diagnostic techniques for tool wear and failure monitoring that have been proposed, 
tested or reported in literature up today. Initially, the necessity for planned tool condition monitoring 
in modern manufacturing is being discussed. Then, there is a discussion about the difference between 
soft and hard faults and the reason that they are used for prediction and diagnosis respectively. The 
paper, then, lists the basic parameters that are correlated with each type of fault. Both direct methods, 
such as computer vision, and indirect methods, such as vibration, that have been used to monitor the 
aforementioned parameters, are presented. Moreover, the paper summarizes the signal processing 
techniques that have been applied to each monitoring method, including e.g. statistical parameters and 
Wavelet Transform. Following this, a number of diagnostic tools, which have been developed for 
diagnosis of tool condition, are presented. The paper concludes that the area of condition monitoring 
and fault diagnosis is of increasing importance, stressing the fact that only few implementations have 
been achieved, as a consequence that all available techniques present drawbacks and limitations. 
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1. INTRODUCTION 
 
Nowadays, conventional machining operations, such as turning, milling, grinding, and 
drilling, are among the most common activities in the manufacturing industry, playing a large 
role in supporting the economy of developed countries [1]. The main trend of the modern 
machining industry is towards production cost reduction by using higher cutting speeds and 
by reducing human resources. The necessity of the latter has lead to the development of 
unmanned machining systems. Condition monitoring and diagnosis systems, which are 
capable of identifying machining system defects and their location, are essential for 
unmanned machining. Thus, much research effort has been made in implementing 
“intelligent” systems to monitor directly or indirectly the machining conditions, utilizing 
signals from thermal, force, acoustic, acceleration and vision sensors. 
 One of the most important components in a machining system is the tool. Unmanned 
production is possible only if there is a method –or a combination of methods– available for 
tool condition monitoring (TCM). Tool wear influences the quality of the surface finish and
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the dimensions of the parts that are manufactured, whereas tool failure is a major cause of 
unplanned interruption in a machining environment [2]. Particularly, for modern machine 
tools, 20% of the downtime is ascribed to tool failure, resulting in reduced productivity and 
economic losses [1].  

A reliable TCM system should allow optimum utilization of the tool’s life cycle. 
Today, tool changes are made based on conservative valuations of tool life without taking into 
account sudden failures, e.g. tool breakage, and at the same time leading to a wastefully high 
number of changes because the full lifetime of tools is not considered. Consequently, valuable 
production time is lost. 

Tool condition is strongly affected by faults that may occur during a machining 
operation. As shown in Figure 1, faults can be classified in two types [3].  

 

 
Figure 1 Hard and soft faults 

 
Soft faults develop progressively with time creating a gradual degradation of the tool. On the 
other hand, hard faults take place instantaneously causing an abrupt cutoff of the operation. In 
other words, soft faults lead to a predictable situation, an attribute that makes them 
appropriate for condition monitoring, while hard faults are generally unpredictable and 
ineligible for this area of research. Consequently, the former type of fault can be used for 
prediction, while the latter is easier for diagnosis. Both hard and soft faults are strongly 
correlated with a number of monitoring parameters (Table 1).  

 
Monitoring parameters for hard faults Monitoring parameters for soft faults 
 Tool breakage  Axis drive motor current/power 
 Door closure  Feed drive current 
 Tool presence  Acceleration 
 Workpiece presence   Force 

  Surface texture 
  Temperature 
  Distance/Displacement 

 
Table 1 The monitoring parameters 
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2. MONITORING METHODS 
 
 The mode that a fault is produced on a tool is a complex process and it is generally 
accepted that analytical models and numerical methods have limited accuracy as condition 
monitoring methods [4]. The remaining options are on-line monitoring, i.e. indirect 
estimation, and direct (generally off-line) measurement of the tool condition. Indirect 
monitoring methods include the measurement of the aforementioned soft fault parameters 
(Table 1, right column), while direct methods offer the potentiality of actual tool condition 
determination based on the examination of the hard fault parameters (Table1, left column). 

Direct tool wear estimation systems are able to measure directly the tool wear by 
means of tool images, computer vision, etc. Their application is simple and the reliability is 
high. However, the automated application of a direct tool wear estimation system is difficult 
because the detection system should be able to detect the wear zone and measure it. On the 
other hand, the main advantage of indirect methods is that they are applied online. 
Unfortunately, these methods present limited reliability and design complexity due to the 
unpredictable impact of the wear process to the measured signal. Moreover, the sensor cost is 
generally high. 

A synopsis of monitoring methods that have been reported in the available literature is 
presented in Table 2. There is an obvious trend among the researchers towards applying 
certain indirect methods such as spindle motor current, cutting forces, vibration, acoustic 
emission and direct methods including laser scatter pattern, scanning electron microscopy, 
surface texture/reflectance imaging and stereo, optical and optoelectronic imaging. 
 
Monitoring methods Reference number 

Spindle motor 
current [11, 12, 13, 37, 38, 49, 50, 53, 76, 78, 94, 99, 104, 108] 

Feed rate [26, 45, 48, 49, 50, 82, 104] 

Cutting forces [4, 5, 6, 19, 28, 31, 34, 35, 37, 38, 39, 45, 46, 48, 52, 53, 56, 57, 59, 61, 62, 74, 
75, 76, 77, 78, 81, 83, 94, 96, 101, 103, 106, 107, 108, 110]  

Cutting speed [26, 45, 48, 50] 

Vibration [10, 24, 36, 38, 40, 49, 52, 53, 56, 57, 76, 77, 82, 83, 86, 95, 96, 101, 107, 108] 

Cutting noise [41, 94] 

Ultrasound signals [33] 

Acoustic Emission [5, 6, 8, 9, 21, 24, 27, 28, 29, 30, 31, 32, 38, 40, 46, 50, 51, 57, 75, 77, 85, 95, 
101, 102, 105, 107, 110] 

Displacement [50, 53, 77, 85, 91] 

Tool temperature [26, 71] 

Roughness [41, 60, 79, 95] 

Other indirect methods [15, 53, 73, 80, 95] 

Direct Methods  
(Vision-based) [16, 17, 18, 19, 20, 23, 39, 42, 43, 44, 47, 55, 58, 60, 69, 70, 81, 91, 97, 100] 

 
Table 2 A summary of monitoring methods that have been reported in the available literature 
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2.1 Cutting forces 
 
 Torque, drift and feed force together with strain measurement are all measures of 
cutting forces and are strongly correlated with the tool wear. The idea behind monitoring 
torque and feed forces is based on the fact that these dynamic parameters generally increase as 
the tool gradually wears due to the increasing friction between tool and workpiece.  

In [5], Heinemann et al. notice that monitoring the torque and thrust force is the most 
common method to obtain information about the amount of tool wear in drilling. Although, 
from their work, it was concluded that the thrust force exhibited a very weak correlation with 
the progression of tool wear and is therefore an inappropriate parameter for monitoring tool 
wear. In contrast, torque appears to be much more suitable for tool condition monitoring in 
drilling. 

On the other hand, Ertunc et al. in [6] note that cutting forces are affected by 
experimental conditions such as cutting conditions, workpiece material and type of the tool; 
for example, the faster feed rate, the higher cutting forces are measured, fact that may cause 
confusion about whether the increasing of cutting forces is due to tool wear or changes in the 
cutting conditions. It is concluded that the proposed method should be developed only under 
specific experimental conditions. Moreover, in [2], Jantunen notices that both torque and 
thrust measurements for monitoring drill wear should be attempted only after a very close 
tolerance has been obtained in the workpiece hardness making this monitoring method 
difficult to be achieved industrially. 

 
2.2 Acoustic emission 
 

Acoustic emission (AE) is a phenomenon which occurs when, for different reasons, a 
small surface displacement of a material surface is produced due to stress waves generated 
when there is a rapid release of energy in a material, or on its surface [2]. Hence, AE signal 
appear to be a promising candidate for tool wear monitoring. 

In [7], Li reviews briefly the research on AE sensing of tool wear condition in turning 
noticing that the major advantage of using AE to monitor tool condition is that the frequency 
range of the AE signal is much higher than that of the machine vibrations and environmental 
noises, and does not interfere with the cutting operation. In [8], Tansel et al. propose a wear 
estimation and tool breakage detection system using AE signals. It was concluded that both 
wear estimation and breakage detection methods were found to be acceptable for industrial 
application. However, the reliability of the tool breakage detection system was higher than the 
wear estimation method. It was also noticed that the main advantage of the AE is its 
independence from the cutting direction. Kim et al., in [9], developed an on-line tool life 
monitoring system using AE signals in gear shaping. It was suggested that the maximum 
RMS AE voltage value is an effective parameter to monitor tool life. The developed tool life 
monitoring system applied successfully to gear machining processes.  

However, both Li [7] and Kim et al. [9] notice, that AE signals, like cutting forces, are 
heavily depended on process parameters, i.e. cutting conditions, tool material and tool 
geometry. Thus, a key issue is how to reduce these effects in intelligent tool wear and fracture 
monitoring using AE signals. Moreover, Jantunen in [2] reckons that AE is seen to suffer 
from severe attenuation and multi-path distortion caused by bolted joints commonly found in 
machine tool structures and restricting the mounting location of the AE transducer to 
somewhere very near the tool or workpiece. 
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2.3 Vibration 
 

AE is no more than high frequency vibration signals. Consequently vibration signals 
present similar behavior to AE signals during a tool wear process. Thus, they are also widely 
used in literature as index of tool condition. 

Against those who consider acoustic emission as a reliable indicator of tool wear,  
in [10], Dimla remarks that substantially little AE is generated during the tool wear process 
compared to the large amount which accompanies tool breakage and fracture, with as much 
depending on the cutting material (workpiece) structure as on the cutting tool. As the 
emphasis on any tool condition monitoring system would generally be on tool wear rather 
than tool fracture, AE is not suitable as tool wear indicator in monitoring applications, but it 
could be used with good effect in detecting tool tip breakage on machining centers. In the 
same paper, Dimla suggests vibration signatures as reliable, robust and applicable for TCM, 
in addition to the fact that vibration signatures require fewer peripheral instruments than AE 
for instance. Furthermore, vibration signals have the quick response time needed to indicate 
changes for on-line monitoring. 
 
2.4 Spindle motor current  
 
 Spindle motor current monitoring features similar characteristics, and thus advantages 
and drawbacks, to cutting force signals. Lee et al., in [11], investigate a hybrid approach to 
cutting force regulation for tool wear signal extraction from the spindle motor current, which 
have been proved successful for monitoring of gradual tool wear. In [12], Constantinides and 
Bennett examine the use of the measurements of spindle motor power for the estimation of 
wear and the detection of the end of effective tool life for a vertical milling machine. Their 
work has shown that the changes in spectral energy in the fluctuating part of the spindle motor 
power consumption are linearly related to the wear rate of the tool. Finally, Franco-Gasca et 
al. in [13] conclude that spindle motor current can be related to the dynamics of drilling 
process and to monitoring the cutting tool condition. 
 
2.5 Other indirect methods 
 

In [14], Abukhshim et al. present a review of previous research on heat generation and 
temperature prediction in metal cutting and implications for high speed machining. They 
noticed that prediction of cutting temperatures is a major challenge in metal cutting due to 
numerous practical difficulties involved in the process. It was concluded, however, that for 
temperature measurement of the high speed cutting process, the most promising candidates 
are the fibre-optic pyrometers and infrared thermography techniques.  

An active method in which the damping ratio of the tool vibration and its behavior 
with tool wear development in the feed direction after impact excitation were discussed by 
Gong et al. in [15]. It was concluded that the tool wear states can be quantitatively estimated 
in machining at any time. 
 
2.6 Direct methods 
 

A direct method includes measurement of flank or crater wear using a vision-based 
system. Vision-based systems are generally much more suitable for off-line inspection and 
diagnosis of hard faults, such as tool-breakage detection. 
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Several researchers have examined the use of machine vision for the measurement of 
tool’s surface texture. In [16], Bradley and Wong present a direct tool condition measurement 
method. The objective was to extract the surface texture signature component due to tool wear 
from the other texture components, using three different image processing techniques, and 
employ it as an indicator of the tool condition. It was concluded that the approach is shown to 
indicate the change in the surface structure with progressive tool wear. Karthik et al., in [17], 
propose a non-contact method that provides visualization of the tool wear geometry using a 
pair of stereo images and generates the volume of crater wear as a new parameter for 
inspection. The results demonstrated that the volume of crater wear can be effectively used to 
measure the amount of the tool wear. Jurkovic et al., in [18], introduced a new approach in 
tool wear measuring technique using CCD vision system consisting of a light source to 
illuminate the tool, a CCD camera, a laser diode with linear projector, a grabber for capturing 
the picture and a PC. In [19], Yeo et al. presented a novel approach for the estimation of tool 
wear using the reflectance of cutting chip surface and a back propagation neural network. 
Results showed that the prediction was in good agreement with the flank wear measured 
experimentally. The authors, however, noticed that the major problem faced in that method 
was the hostility of the cutting environment. The dust and chip particles accumulated on the 
optical instrument result in false indication of tool wear.  

Finally, in [20], Kerr et al. described the use of digital image processing techniques in 
the analysis of images of worn cutting tools in order to assess their degree of wear and thus 
the remaining useful life.  It was concluded that, although all the textural analysis methods 
tested showed some potential for the direct assessment of tool wear condition, they are subject 
to changes in illumination and viewing conditions, as well as to contamination of the tool by 
dirt, cutting fluid, etc. In any practical TCM system, these problems (whilst not 
insurmountable) would need to be overcome before computer vision could be used as a robust 
indicator of tool wear. 
 
3. SIGNAL PROCESSING TECHNIQUES 
 

The importance of signal processing lies on the fact that it is essential to acquire the 
meaningful information out of the mass of information of an obtained signal. In many cases 
the dilemma is that the more sophisticated techniques are slow to use and, consequently, not 
suitable, e.g. for tool breakage detection [2]. In addition, the results with a sophisticated 
analysis function are sensitive to the cutting conditions, making the diagnosis more 
demanding. On the other hand, very simplistic techniques are fast and often not influenced 
from changes in cutting conditions. Unfortunately, at the same time they are not so sensitive 
to tool wear either. A summary of signal processing techniques that have been tested in the 
literature is given in Table 3. Statistical parameters, time domain, Fourier transforms and 
wavelet analysis appear to be the most prevalent signal processing techniques amongst the 
researchers. 
 
3.1 Statistical parameters and time domain 
 

A time domain signal is not very informative as such, or at least it is very time 
consuming. Especially, force sensor signals in the time domain do not show any correlation 
with drill wear [2]. Although the utilization of statistical parameters along with time domain 
signal can be proved promising: 
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 The gradient of the thrust force has been identified to be suitable process parameter for 
prediction of tool failure. 

 As the tool wears, the torque requirement increases and correspondingly the spindle 
motor current also increases. The RMS value of the spindle motor current becomes a 
valuable feature for wear prediction. 

 
Signal processing 

techniques Reference number 

Time series [27, 77, 85, 103] 

Fourier transforms 
(FFT, STFT, DFT) [10, 13, 15, 31, 46, 49, 51, 56, 57, 73, 77, 82, 83, 94, 95, 96, 108, 110] 

Spectral analysis [4, 12, 80, 82, 86, 96, 108] 

Time domain [4, 5, 10, 24, 28, 29, 30, 31, 35, 36, 39, 40, 48, 51, 60, 75, 77, 82, 83, 85, 94, 99, 
108] 

Standard histogram 
analysis / stretching [20, 70] 

Thresholding, Image 
segmentation [20, 44, 97, 100] 

Statistical parameters 
& ARMA 

[4, 5, 6, 9, 11, 12, 18, 24, 26, 28, 29, 30, 31, 35, 37, 38, 39, 40, 42, 46, 51, 53, 56, 
62, 64, 74, 75, 77, 82, 83, 85, 94, 96, 99, 105, 106, 108] 

GLCM analysis, Gray 
level distribution [20, 60] 

Wavelet transform / 
analysis [4, 13, 21, 31, 33, 34, 42, 51, 57, 77, 82, 101, 102, 104] 

Edge detection, 
enhancement [23, 43, 97] 

Cross-correlation 
function [56, 97] 

Fast Hough Transform [58, 97] 

Taylor diagrams /  
log-log analysis [91] 

Other signal 
processing techniques [12, 16, 17, 18, 20, 44, 51, 53, 62, 65, 74, 78, 95, 100] 

 
Table 3 A summary of signal processing techniques that have been reported in the literature 

 
3.2 Fourier transforms 
 

Fourier transforms, including Fast Fourier transforms (FFT), short-time Fourier 
transforms (STFT) and discrete Fourier transforms (DFT), provide a means to find out the 
frequency content of a measured signal. In particular, power spectrum of the drift force 
changes from a band limited process to a wide band process when the tool is worn. The power 
content of the high frequencies of the cutting forces increases as the tool approaches failure, 
providing thus a useful index to detect the failure of the cutting tool [2]. 
 
3.3 Wavelet analysis 
 

It is suggested that wavelets might be the perfect tool for many applications requiring 
automated monitoring of manufacturing operations [2]. However, not enough comparison to 
FFT or statistical parameters has been made yet. Chen and Li, in [21], present a technique 
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based on AE signal wavelet analysis for tool condition monitoring. The results showed that 
TCM cannot depend on Fourier transform solely because of its limitation. They concluded 
that their method can be used as a valuable tool for TCM, suggesting several approaches to be 
tested, including the threshold value selection function and new broadband sensors 
application. Franco-Gasca et al., in [13], analyzed the sensorlessly obtained driver current 
signal to estimate the tool condition by using the discrete wavelet transform (DWT). The 
DWT was found helpful and the whole method provided an accurate estimation of drill wear 
under different drilling conditions. 
 
3.4 Other signal processing techniques 
 
 Several other signal processing techniques have been studied in the literature. The 
majority of them have been used for image processing, in direct methods. In [16], Bradley and 
Wong concluded that all three image analysis methods (Histogram Analysis, Frequency 
Domain Analysis, Texture Domain Analysis) that were used are shown to indicate the change 
in the surface structure with progressive tool wear. In particular, the frequency domain 
technique can also identify the onset of tool wear, an important factor in any automated tool 
monitoring system. Kerr et al., in their work [20] confirmed the results of Kurada and Bradley 
[22], who found the thresholded variance operator to be a good indicator of wear. Although, 
the tests that carried out showed generally disappointing results; only the inertia and entropy 
statistics gave the expected monotonic trends with wear and only in a particular gray level co-
occurrence matrix search direction (GLCM analysis). Finally, in [23], Sortino presented an 
innovative algorithm for tool wear zone identification and a detection system based on 
statistical filtering of images of the cutting edge. The statistical filter proved to be very 
efficient in comparison to standard filters for edges detection. 
 
4. CLASSIFICATION/DIAGNOSTIC TOOLS 
 
 Last but not least, diagnostic tools play the important role of classifying the previously 
acquired and processed signals in a TCM system and taking quick and precise decisions about 
the extent of the tool wear. A summary of classification/diagnostic tools that have been tested 
in the literature is given in Table 4. It can be said that, it is a clear trend among the researchers 
towards using Fuzzy Logic and Neural Networks. 
 
4.1 Fuzzy Logic 
 

Fuzzy Logic (FL) reasoning has been successfully applied in many different fields. 
Among others, fuzzy logic systems (fuzzy inference systems, FL systems) were tested for 
machine monitoring and diagnostics.  

In [24], Sokolowski deals with some specific aspects of FL system implementation in 
machine tool and cutting process monitoring. The main scope of his research was to work out 
a cutting tool wear monitoring strategy which makes possible far reaching independence of 
the wear symptoms from the cutting conditions. He noticed that the FL system led to poor 
tool wear classification. Some crucial disadvantages were pointed out; the FL systems are 
much more sensitive to quantity and quality of information provided as an input. For example, 
results obtained with the FL systems depend on applied data selection methods. In addition, 
the performance of the systems can deteriorate with increasing number of inputs or increasing 
number of fuzzy rules. Lower learning ability of the considered systems was revealed, as 
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well. However, Sokolowski concluded that the above facts do not stand for neglecting the FL 
systems for data integration. He focused on potential problems and difficulties that could be 
faced while applying such systems for machine tool and cutting process diagnostics, but this 
does not mean that for other applications the FL systems may not perform better than, for 
example, neural networks. 
 

Classification / 
diagnostic tools Reference number 

Pattern recognition [27, 38, 77, 94] 

Adaptive Resonance 
Theory (ART2) [8, 110] 

Neural Networks [4, 19, 24, 25, 26, 28, 31, 33, 36, 41, 45, 47, 48, 77, 82, 84, 96, 107, 108, 109, 
110] 

Sensor / Data fusion [6, 77, 94, 108] 

Microcomputer-based [30, 74, 78, 97, 106] 

Linear Regression (LR) [12, 20, 34, 37, 57, 59, 77] 

Fuzzy Logic (FL) [24, 35, 37, 39, 48, 76, 77, 85, 104] 

Hidden Markov Models 
(HMM) [4, 49, 61, 103] 

Support Vector 
Machine (SVM) [51, 75, 105] 

Knowledge &  
Rule-based [52, 53] 

Other diagnostic tools [8, 13, 25, 26, 34, 42, 48, 61, 66, 67, 70, 71, 77, 81, 94, 97, 100] 

 
Table 4 A summary of classification/diagnostic tools that have been reported in the literature 

 
4.2 Neural Networks (NN) 
 

Currently, it is generally accepted that the indirect sensor-based approach is the best 
practical solution to reliable TCM [4]. Furthermore, in recent years, neural networks (NNs) 
have been shown to model successfully the complex relationships between input feature sets 
of sensor signals and tool wear data. NNs have several properties that make them ideal for 
effectively handling noisy and even incomplete data sets. Another powerful method of 
modeling noisy dynamic systems is by using hidden Markov models (HMMs), which are 
commonly employed in modern speech-recognition systems.  

In [4], Scheffer et al. aim at presenting a comparative evaluation of the performance of 
NNs and HMMs for a TCM application describing the advantages and disadvantages of both 
methods. The advantage of NNs is their ability to perform continuous estimations (although 
HMMs can also be employed to achieve this). The disadvantages of NNs are their relative 
complexity compared with HMMs and also the fact that great deal of experience and trial-
end-error work are required for successfully implementing an NN-based monitoring strategy. 
The advantages of HMMs are that if the problem is well understood it is fairly easy to 
initialize and implement an HMM-based monitoring strategy, since computer 
implementations of HMMs are readily available. However, HMMs typically contain a large 
number of parameters and therefore need large amounts of data to estimate the HMMs 
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parameters properly. Lastly, HMMs are not generally used for making continuous 
estimations, but rather for carrying out classification tasks. In [25], Ojha and Dixit used 
Neural networks to predict lower, upper and most likely estimates of the tool life. The 
comparison, which is made in the same paper, between neural networks and multiple 
regression, shows the superiority of the former. In [26], Choudhury and Bartarya focused on 
the comparison of Neural Networks (NN) against Design Of Experiments (DOE). The results 
showed that neural networks come ahead of the DOE in nearness of the predictions to the 
experimental values of flank wear as the average errors in the flank wear in case of NN are 
less than that obtained using DOE. 
 
5. CONCLUDING REMARKS 
 

A summary of monitoring methods, signal processing techniques and diagnostic tools 
applied to tool condition monitoring (TCM) has been presented. Nowadays, unmanned 
machining operations are possible only if there is a method –or a combination of methods– 
available for TCM. It is essential to distinguish between sudden and progressive failure. 
Methods that utilize cutting force, vibration or spindle motor current signals appear to be 
more effective in monitoring the latter type of failure, i.e. for fault prediction. On the other 
hand, acoustic emission signals and the majority of direct (vision based) methods are 
generally used for diagnosis of hard, unpredictable faults, such as tool breakage. Signal 
processing is the part of a TCM system that acquires the meaningful information out of the 
mass of information of an obtained signal. For this scope, time domain and statistical 
techniques, Fourier transforms and wavelet analysis are widely used by a number of 
researchers. However, it is suggested that wavelets might be the perfect tool for many 
applications requiring automated monitoring of manufacturing operations. Neural Networks 
and Fuzzy Logic are generally accepted as ideal diagnostic tools which could take quick and 
precise decisions about the tool condition. The expediency of the application of the latter, 
with the use of infrared thermography (IR) imaging, is of further interest and under 
investigation by the current research team, in the area of failure prognosis.  

It is unobjectionable, that the area of condition monitoring and fault diagnosis is of 
increasing importance. Unfortunately, only few implementations have been achieved, such as 
Wearmon software [18], ESPRIT Project P2255 with TOPMUSS toolbox [3], Caron TMAC 
System (CNC Engineering Inc.) and NC4 (Renishaw Corp.).  

In conclusion, it must be noticed that all available methods present drawbacks and 
limitations; most effective and reliable methods for tool wear monitoring are so slow in 
practice that they are not suitable for the detection of sudden failures. Generally speaking, the 
simpler a TCM system is, the less likely it is to fail. Reliability was rated as being the most 
important concern by those actually using some form of TCM. Thus, it is obviously vital to 
minimize the complexity of any future TCM system [1]. 
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